Posts Tagged ‘spring-4.2’

Learn how Spring 4.2 simplifies handling transaction bound events (e.g. sent just after a database commit).

Introduction

As you probably already know (e.g. from my previous blog post) it is no longer needed to create a separate class implementing ApplicationListener with onApplicationEvent method to be able to react to application events (both from Spring Framework itself and our own domain events). Starting with Spring 4.2 the support for annotation-driven event listeners was added. It is enough to use @EventListener at the method level which under-the-hood will automatically register corresponding ApplicationListener:

    @EventListener
    public void blogAdded(BlogAddedEvent blogAddedEvent) {
        externalNotificationSender.blogAdded(blogAddedEvent);
    }

Please notice that using domain objects in the events has notable drawbacks and is not the best idea in many situations. Pseudodomain objects in the code examples were used to not introduce unnecessary complexity.

Transaction bound events

Simple and compact. For “standard” events everything looks great but in some cases it is needed to perform some operations (usually asynchronous ones) just after the transaction has been committed (or rolled back). What’s then? Can the new mechanism be used as well?

Business requirements

First, a small digression – business requirements. Let’s imagine the super fancy blog aggregation service. An event is generated everytime the new blog is added. Subscribed users can receive an SMS or a push notification. The event could be published after the blog object is scheduled to be saved in a database. However, in in a case of commit/flush failure (database constraints violation, an issue with ID generator, etc.) the whole DB transaction would be rolled back. A lot of angry users with broken notification will appear at the door…

Technical issues

In modern approach to transaction management, transactions are configured declaratively (e.g. with @Transactional annotation) and a commit is triggered at end of transactional scope (e.g. at the end of a method). In general this is very convenient and much less error prone (than the programmatic approach). On the other hand, commit (or rollback) is done automatically outside our code and we are not able to react in a “classical way” (i.e. publish event in the next line after transaction.commit() is called).

Old school implementation

One of the possible solutions for Spring (and a very elegant one) was presented by indispensable Tomek Nurkiewicz. It uses TransactionSynchronizationManager to register transaction synchronization for the current thread. For example:

    @EventListener
    public void blogAddedTransactionalOldSchool(BlogAddedEvent blogAddedEvent) {
        //Note: *Old school* transaction handling before Spring 4.2 - broken in not transactional context

        TransactionSynchronizationManager.registerSynchronization(
                new TransactionSynchronizationAdapter() {
                    @Override
                    public void afterCommit() {
                        internalSendBlogAddedNotification(blogAddedEvent);
                    }
                });
    }

The passed code is executed in the proper place in the Spring transaction workflow (for that case “just” after commit).

To provide support for execution in non-transactional context (e.g. in integration test cases which couldn’t care about transactions) it can be extended to the following form to not fail with java.lang.IllegalStateException: Transaction synchronization is not active exception:

    @EventListener
    public void blogAddedTransactionalOldSchool(final BlogAddedEvent blogAddedEvent) {
        //Note: *Old school* transaction handling before Spring 4.2

        //"if" to not fail with "java.lang.IllegalStateException: Transaction synchronization is not active"
        if (TransactionSynchronizationManager.isActualTransactionActive()) {

            TransactionSynchronizationManager.registerSynchronization(
                    new TransactionSynchronizationAdapter() {
                        @Override
                        public void afterCommit() {
                            internalSendBlogAddedNotification(blogAddedEvent);
                        }
                    });
        } else {
            log.warn("No active transaction found. Sending notification immediately.");
            externalNotificationSender.newBlogTransactionalOldSchool(blogAddedEvent);
        }
    }

With that change in a case of the lack of active transaction provided code is executed immediately. Works fine so far, but let’s try to achieve the same thing with annotation-driven event listeners in Spring 4.2.

Spring 4.2+ implementation

In addition to @EventListener Spring 4.2 provides also one more annotation @TransactionalEventListener.

    @TransactionalEventListener
    public void blogAddedTransactional(BlogAddedEvent blogAddedEvent) {
        externalNotificationSender.newBlogTransactional(blogAddedEvent);
    }

The execution can be bound to standard transaction phases: before/after commit, after rollback or after completion (both commit or rollback). By default it processes an event only if it was published within the boundaries of a transaction. In other case the event is discarded.

To support the execution in non-transactional context the falbackExecution flag can be used. If set to “true” the event is processed immediately if there is no transaction running.

    @TransactionalEventListener(fallbackExecution = true)
    public void blogAddedTransactional(BlogAddedEvent blogAddedEvent) {
        externalNotificationSender.newBlogTransactional(blogAddedEvent);
    }

Summary

Introduced in Spring 4.2 annotation-driven event listeners continue a trend to reduce boilerplate code in Spring (Boot) based applications. No need to manually create ApplicationListener implementations, no need to use directly TransactionSynchronizationManager – just one annotation with proper configuration. The other side of the coin is that it is a little bit harder to find all event listeners, especially if there are dozens of them in our monolith application (though, it can be easily grouped). Of course, the new approach is only an option which could be useful in a given use-case or not. Nevertheless another piece of Spring (Boot) magic flood into our systems. But maybe resistance is futile?

Please note that Spring Framework 4.2 is a default dependency of Spring Boot 1.3 (at the time of writing 1.3.0.M5 is available). Alternatively, it is possible to manually upgrade Spring Framework version in Gradle/Maven for Spring Boot 1.2.5 – it should work for most of the cases. Code examples are available from GitHub.

Btw, writing examples for that blog post gave me the first real ability to use the new test transaction management system introduced in Spring 4.1 (in the past I only mentioned it during my Spring training sessions). Probably, I will write more about it soon.

Advertisements

Learn how to reduce boilerplace code in event handling with annotation-driven event listeners in Spring 4.2+.

Introduction

Exchanging events within the application has become indispensable part of many applications and thankfully Spring provides a complete infrastructure for transient events (*). The recent refactoring of transaction bound events gave me an excuse to check in practice the new annotation-driven event listeners introduced in Spring 4.2. Let’s see what can be gained.

(*) – for persistent events in Spring-based application Duramen could be a solution that is worth to see

Spring logo

The old way

To get a notification about an event (both Spring event and custom domain event) a component implementing ApplicationListener with onApplicationEvent has to be created.

@Component
class OldWayBlogModifiedEventListener implements
                        ApplicationListener<OldWayBlogModifiedEvent> {

    (...)

    @Override
    public void onApplicationEvent(OldWayBlogModifiedEvent event) {
        externalNotificationSender.oldWayBlogModified(event);
    }
}

It works fine, but for every event a new class has to be created which generates boilerplate code.

In addition our event has to extend ApplicationEvent class – the base class for all application events in Spring.

class OldWayBlogModifiedEvent extends ApplicationEvent {

    public OldWayBlogModifiedEvent(Blog blog) {
        super(blog);
    }

    public Blog getBlog() {
        return (Blog)getSource();
    }
}

Please notice that using domain objects in the events has notable drawback and is not the best idea in many situations. Pseudodomain objects in the code examples were used to not introduce unnecessary complexity.

Btw, ExternalNotificationSender in this example is an instance of a class which sends external notifications to registered users (e.g. via email, SMS or Slack).

Annotation-driven event listener

Starting with Spring 4.2 to be notified about the new event it is enough to annotate a method in any Spring component with @EventListener annotation.

    @EventListener
    public void blogModified(BlogModifiedEvent blogModifiedEvent) {
        externalNotificationSender.blogModified(blogModifiedEvent);
    }

Under the hood Spring will create an ApplicationListener instance for the event with a type taken from the method argument. There is no limitation on the number of annotated methods in one class – all related event handlers can be grouped into one class.

Conditional event handling

To make @EventListener even more interesting there is an ability to handle only those events of a given type which fulfill given condition(s) written in SpEL. Let’s assume the following event class:

public class BlogModifiedEvent {

    private final Blog blog;
    private final boolean importantChange;

    public BlogModifiedEvent(Blog blog) {
        this(blog, false);
    }

    public BlogModifiedEvent(Blog blog, boolean importantChange) {
        this.blog = blog;
        this.importantChange = importantChange;
    }

    public Blog getBlog() {
        return blog;
    }

    public boolean isImportantChange() {
        return importantChange;
    }
}

Please note that in the real application there would be probably a hierarchy of Blog related events.
Please also note that in Groovy that class would be much simpler.

To generate event only for important changes the condition parameter can be used:

    @EventListener(condition = "#blogModifiedEvent.importantChange")
    public void blogModifiedSpEL(BlogModifiedEvent blogModifiedEvent) {
        externalNotificationSender.blogModifiedSpEL(blogModifiedEvent);
    }

Relaxed event type hierarchy

Historically ApplicationEventPublisher had only an ability to publish objects which inherited after ApplicationEvent. Starting with Spring 4.2 the interface has been extended to support any object type. In that case the object is wrapped in PayloadApplicationEvent and sent through.

//base class with Blog field - no need to extend `ApplicationEvent`
class BaseBlogEvent {}

class BlogModifiedEvent extends BaseBlogEvent {}
//somewhere in the code
ApplicationEventPublisher publisher = (...);    //injected

publisher.publishEvent(new BlogModifiedEvent(blog)); //just plain instance of the event

That change makes publishing events even easier. However, on the other hand without an internal conscientiousness (e.g. with marker interface for all our domain events) it can make event tracking even harder, especially in larger applications.

Publishing events in response to

Another nice thing with @EventListener is the fact that in a situation of non-void return type Spring will automatically publish returned event.

    @EventListener
    public BlogModifiedResponseEvent blogModifiedWithResponse(BlogModifiedEvent blogModifiedEvent) {
        externalNotificationSender.blogModifiedWithResponse(blogModifiedEvent);
        return new BlogModifiedResponseEvent(
            blogModifiedEvent.getBlog(), BlogModifiedResponseEvent.Status.OK);
    }

Asynchronous event processing

Updated. As rightly suggested by Radek Grębski it is also worth to mention that @EventListener can be easily combined with @Async annotation to provide asynchronous event processing. The code in the particular event listener doesn’t block neither the main code execution nor processing by other listeners.

    @Async    //Remember to enable asynchronous method execution 
              //in your application with @EnableAsync
    @EventListener
    public void blogAddedAsync(BlogAddedEvent blogAddedEvent) {
        externalNotificationSender.blogAdded(blogAddedEvent);
    }

To make it work it is only required to enable asynchronous method execution in general in your Spring context/application with @EnableAsync.

Summary

Annotation-driven event listeners introduced in Spring 4.2 continue a trend to reduce boilerplate code in Spring (Boot) based applications. The new approach looks interesting especially for small applications with a small amount of events where a maintenance overhead is lower. In the world of ubiquitous Spring (Boot) magic it is more worthy to remember that with great power comes great responsibility.

In the next blog post I will write how the new mechanism can be also used to simplify handling of transaction bound events.

Please note that Spring Framework 4.2 is a default dependency of Spring Boot 1.3 (at the time of writing 1.3.0.M5 is available). Alternatively it is possible to manually upgrade Spring Framework version in Gradle/Maven for Spring Boot 1.2.5 – it should work for most of the cases.